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Specifying 
Learning 
Demonstrating 
etc. 
(Also, whose intent?)

Communicating Intent to Autonomous Systems (or AIs) 
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Where do rewards come from?

• In RL, the objective of the agent designer is 
specified in the form of a reward function 

• Not always easy to specify the reward function 
- Value misalignment in AI safety  

[Bostrom’03][Russell et al’15][Amodei et al’16] 

• Solutions: Optimal Rewards, Shaping, Inverse RL



Inverse Reinforcement Learning 
[Ng&Russell’00] [Abbeel&Ng’04]
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• Input 
- Environment dynamics  

e.g., an MDP without a reward function 
- Optimal behavior  

e.g., the full policy or trajectories 

• Output: the inferred reward function



Presentation Outline

Repeated Inverse Reinforcement Learning

1) Motivation and background 

2) Experimenter chooses tasks 

3) “Nature” chooses tasks 

4) Identification in a fixed environment  

5) One step closer to practice: working with trajectories



• Bad news: problem fundamentally ill-posed
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Unidentifiability of Inverse RL



• Bad news: problem fundamentally ill-posed 
• Good news (?): may still mimic a good policy for 

this task even if reward is not identified
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Unidentifiability of Inverse RL

(R+ ✓?) 2 {v : 8a, (P⇡?

� P a)(I� �P⇡?

)�1v � 0}

use heuristic to 
guess a point 

[Ng&Russell’00] The set of possible reward vectors is:

And yet…



An example scenario:
• Intent: background reward function θ* : S → [-1, 1] 

- no harm to humans, no breaking of laws, cost 
considerations, social norms, general preferences, … 

• Multiple tasks:  {(Et, Rt)} 

- Et = ⟨S, A, Pt, γ, µt⟩ is the task environment 

- Rt is the task-specific reward 
• Assumption: human is optimal in ⟨S, A, Pt, Rt + θ*, γ⟩
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AI Safety: Generalization to new tasks

Can we learn θ* from optimal demonstrations 
on a few tasks OR generalize to new ones?

initial distribution



More about Unidentifiability in IRL 

There are two types

(1) Representational Unidentifiability

(2) Experimental Unidentifiability



This Work 

There are two types of unidentifiability in IRL.

(1) Representational Unidentifiability

(2) Experimental Unidentifiability

Should be ignored.

Can be dealt with.



Representational Unidentifiability

Behavioral Equivalence

We say two reward functions R and R

0
are behaviorally equivalent if they induce

the same set of optimal policies in any possible environment E.

For any E, the MDP (E, R) has the same set of optimal policies as (E, R0).

• Behavioral equivalence induces equivalence classes [R] over rewards.

• For each [R], fix a canonical element of [R].

Goal of Identification is to find canonical element of [θ*]
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Outline of the talk

1. Motivation and background 
2. Experimenter chooses tasks 
3. “Nature” chooses tasks 
4. Identification in a fixed environment  
5. One step closer to practice: working with 

trajectories



13

“Experimenter” chooses tasks

Formal protocol 
• The experimenter chooses {(Et, Rt)} 
• Human subject reveals πt* (optimal for Rt + θ* in Et)

Theorem: If any task may be chosen, there is an algorithm 
that outputs θ s.t. ||θ - θ*||∞ ≤ ε after O(log(1/ε)) tasks.



……
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…R1

+4

+0
+0

-2 +8

+0 +0 +0

Uncertainty 
in θ*

Omnipotent identification
Theorem: if any task may be chosen, there is an algorithm 
that outputs θ s.t. ||θ - θ*||∞ ≤ ε after O(log(1/ε)) tasks.

fixed environment E

θ*
(unknown)

-10

+10

0
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…

+0
+0

θ*
(unknown)

-5 +5 -5R2

fixed environment E

+4 -2 +8

-10

+10

0

Omnipotent identification
Theorem: if any task may be chosen, there is an algorithm 
that outputs θ s.t. ||θ - θ*||∞ ≤ ε after O(log(1/ε)) tasks.

Uncertainty 
in θ*

…

…
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…R1

+4

+0
+0

-2 +8

+0 +0 +0

Uncertainty 
in θ*

[-10, 10] [-10, 10] [-10, 10][0, 10] [-10, 0] [0, 10]

Theorem: If any task may be chosen, there is an algorithm 
that outputs θ s.t. ||θ - θ*||∞ ≤ ε after O(log(1/ε)) tasks.

fixed environment E

θ*
(unknown)

“Experimenter” chooses tasks



Uncertainty 
in θ*+R2
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…

+0
+0

θ*
(unknown)

-5 +5 -5

[0, 10] [-10, 0] [0, 10]

R2

[0, 5] [-5, 0] [5, 10]

fixed environment E

+4 -2 +8

Uncertainty 
in θ*

Theorem: If any task may be chosen, there is an algorithm 
that outputs θ s.t. ||θ - θ*||∞ ≤ ε after O(log(1/ε)) tasks.

[-5, 5][-5, 5] [-5, 5]
Uncertainty 

in θ*

“Experimenter” chooses tasks



Issue with the Omnipotent setting

• Motivation was the difficulty for a human to specify 
the reward function 

• But in the experiment, we ask: “would you want 
something if it costs you $X?” 

• Can we make weaker assumptions on the tasks?
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Outline of the talk

1. Motivation and background 
2. Experimenter chooses tasks 
3. “Nature” chooses tasks 
4. Identification in a fixed environment  
5. One step closer to practice: working with 

trajectories
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Given a sequence of arbitrary tasks {(Et, Rt)} … 
1. Agent proposes a policy πt 

2. If near-optimal, great! 
3. If not, a mistake is counted, and human 

demonstrates πt*  (optimal for Rt + θ* in Et ) 

Algorithm design: how to behave (i.e., choose πt) ? 
Analysis: upper bound on the number of mistakes?

If {(Et, Rt)} never change… 
• back to classical inverse RL (θ ≠ θ*) X  
• agent knows how to behave ✓

Nature chooses tasks
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Value and loss of a policy
Given task (E, R) where E = ⟨S, A, P, γ, µ⟩, the 
(normalized) value of a policy π  is defined as:

which is equal to                       , where

⌘⇡µ,P = (1� �)
�
µ>(I� �P⇡)�1

�>

discounted occupancy vector (                      )

Define 

(1� �)E
" 1X

⌧=1

�⌧�1 (R(s⌧ ) + ✓⇤(s⌧ ))
�� s1 ⇠ µ1,⇡, P

#

k⌘⇡µ,P k1 = 1

hR+ ✓⇤, ⌘
⇡
µ,P i

loss = hR+ ✓⇤, ⌘
⇡⇤

µ,P � ⌘

⇡
µ,P i
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Reformulation of protocol

Every environment E induces a set of occupancy 
vectors {x(1), x(2), …, x(K)} in       (“arms”). 

1. Agent proposes x. Let x* be the optimal choice.  
2. If 〈 θ* + R, x 〉  ≥  〈 θ* + R, x* 〉 - ε, great! 

3. If not, a mistake is counted, and x* is revealed.

Rd kx(i)k1  1.

Formally, we use transformation to Linear Bandits



Let θ be some guess of θ* and behave accordingly: 

〈 θ , x 〉 ≥ 〈 θ , x* 〉 

If a mistake is made: 
〈 θ* , x 〉 < 〈 θ* , x* 〉 

(2) - (1) : 
〈 θ* - θ, x* - x 〉 > 0
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Algorithm outline

θ
x* - x

How to choose θ ?

〈 θ , x* - x 〉 ≤ 0

〈 θ* , x* - x 〉 > 0

(1)

(2)

〈 θ + R , x* - x 〉 ≤ 0

〈 θ* + R , x* - x 〉 > 0

For simplicity, assume for now that R = 0
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The ellipsoid algorithm

θ
x* - x

Theorem: the number of total mistakes is O(d2 log(d/ε)).

volume shrinks to e-1/2(d+1)

x*  does not have to be optimal; 
it just has to be better than x
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gap?

Ω(d log(1/ε)) lower bound

Experimenter 
chooses tasks

Nature 
chooses tasks

log(1/ε)  
demo’s

O(d2 log(d/ε)) 
demo’s

choose {(Et, Rt)} 
to identify θ*

choose {πt} to 
minimize loss
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Ω(d log(1/ε)) lower bound

…
Rt = 0; agent decides 
whether each dim > 0 

posterior on each dimension of θ*+Rt

…
reveal information

…use Rt to offset 
the uncertainty
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strong assumptions

no identification 
guarantee

Experimenter 
chooses tasks

Nature 
chooses tasks

log(1/ε)  
demo’s

O(d2 log(d/ε)) 
demo’s

choose {(Et, Rt)} 
to identify θ*

choose {πt} to 
minimize loss
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Theorem: in the ellipsoid algorithm, if no further mistake 
is possible under any task, then the current ellipsoid 
center c satisfies ||c - θ*||∞ ≤ ε.

no identification 
guarantee

we cannot 
force mistakes c

θ*

ε

Nature 
chooses tasks

O(d2 log(d/ε)) 
demo’s

choose {πt} to 
minimize loss



29

no identification 
guarantee

something 
in between?

strong assumptions

Experimenter 
chooses tasks

Nature 
chooses tasks

log(1/ε)  
demo’s

O(d2 log(d/ε)) 
demo’s

choose {(Et, Rt)} 
to identify θ*

choose {πt} to 
minimize loss
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fixed task environment 
experimenter chooses 

task reward

Experimenter 
chooses tasks

Nature 
chooses tasks

log(1/ε)  
demo’s

O(d2 log(d/ε)) 
demo’s

choose {(Et, Rt)} 
to identify θ*

choose {πt} to 
minimize loss

identification 
guarantees?
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A mathematical difficulty

• Given fixed E, algorithm chooses R1, R2, …  
• As before, we’d like to make no assumption on E. 
• But what if E is uncontrolled? (x(1) = x(2) = … = x(K)) 

- If some coordinate of x(i) has no variation, we 
cannot identify θ*  on that coordinate.
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Diversity score and identification guarantee

• Let X = [x(1), x(2), …, x(K)], and define   
 
 
 

• Theorem: If the agent runs the ellipsoid algorithm, 
then there exists {Rt} and a sequence of tie-break 
choices, such that after O(d2 log(d/ε)) tasks the 
ellipsoid center c satisfies 

smallest (d-th) 
singular value

kc� ✓?k1 
✏
p
(K � 1)/2

spread(X)

spread(X) = �min

✓
X
⇣
I� 1

K
1K1>

K

⌘◆

remove average 
components
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Working with trajectories

• Expressing full policy can be difficult 
• A more realistic protocol 

- Agent rolls out a trajectory. 
- Human demonstrates a trajectory if he/she decides that the 

agent’s trajectory is unsatisfying.

agent

human
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Modification of protocol

1. Hard to decide if agent’s full policy is suboptimal 
- instead, inspect if any of its actions is suboptimal 

2. Ineffective to demonstrate from the actual initial state 
- instead, start from where the agent errs

learner

demonstrator

total demonstration trajectories˜O

✓
d2

✏2
log

� d

✏�

�◆

agent

human

s a

Q⇤(s, a) < V ⇤(s)� ✏



Summary

• Communicating Intent to AIs remains an open challenge 

• We need formalisms that allow us to ask and answer important 
questions about communicating intent 

• RIRL (Repeated IRL) allows us to get at Identifiability / 
Generalization (this work) 

• CIRL (Cooperative IRL) allows us to consider the human and 
the AI both acting  

• Other fields, e.g., PL, Formal Methods, Logic, Controls, OR, 
have other/related ways of thinking about constraints and 
optimization
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